
Scaling Real-Time Telematics Applications
using Programmable Middleboxes: A Case Study in

Traffic Prediction
Annie Chen∗§, Navendu Jain†§, Angelo Perinola‡§, Tadeusz Pietraszek∗§, Sean Rooney∗¶, Paolo Scotton∗¶

∗IBM Research, Zurich Research Laboratory
Säumerstrasse 4

8803 R̈uschlikon, Switzerland
Email: {ach,pie,sro,psc}@zurich.ibm.com

†Email: nav@cs.utexas.edu
‡Email: angelo.perniola@unicatt.it

§This work was done while visiting the IBM Zurich Research Laboratory.
¶Paolo Scotton and Sean Rooney are Research Staff Memebers at the IBM Research.

Abstract— Floating Car Data (FCD), i.e. traffic and in-car data
collected and transmitted by moving cars, is an emerging telem-
atics application providing a range of networked services to the
road users. FCD is an example of a large sensor network, whose
complexity increases with the number of session participants. Our
work is examining how deploying application-specific functions
in the network can help in scaling such systems.

We have chosen to configure these functions on a dedicated
device that is commonly called a middlebox. These middleboxes
use programmable network processors in order to attain the
required processing and forwarding speeds, while communicating
with each other and back-end server using standard middleware
components. We present our experience in using such a pro-
grammable middlebox in the scaling of a large telematics service,
explaining how the middlebox fits into the end-to-end application.
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I. I NTRODUCTION

Over the last 10 years, the rapid development of GSM and
mobile networks has changed telematics, enabling many new
applications. This is particularly significant to the automotive
industry, since the cars can get almost uninterrupted access to
the global network.

Initially processors were added to cars to monitor and
control the cars’ electronics. Subsequently, in-car computers
were used for processing external information to assist the
driver, e.g. the display of current vehicle location on a map.
Combining the first two applications with global networking
capabilities made it possible for the vehicle to communicate its
state to external applications and in return receive information
from them.

Urban traffic prediction is an example of a class of telemat-
ics applications that are, due to the amount of data and required
real-time response, particularly challenging to build. Other
applications belonging to this class are dynamic congestion-
based charging and assisted urban parking spot identification.

These applications may have to handle and process tens of
thousands of packets per second.

Our work has been exploring the infrastructure needed to
build such real-time telematics applications. We have imple-
mented a realistic prediction model using standard middleware
components and tested the number of vehicles it can support.
We found that the scalability of the infrastructure could be
dramatically increased by the addition of components capable
of aggregating information from multiple cars before transmit-
ting it to the back-end servers.

First, we describe the in-vehicle component of the appli-
cation, then we show how the traffic prediction model was
implemented on our back-end servers. Next we demonstrate
how the additional aggregation components, implemented on
telematic-specific middleboxes and placed between the cars
and the back-end servers, allowed the servers to scale. Finally
we present measurement results that compare the application
behavior with and without these components.

II. A PPLICATION OVERVIEW: URBAN TRAFFIC

PREDICTION

The analysis of different urban traffic prediction algorithms
is beyond the scope of this paper. For the purposes of our
work, we used the model proposed by Peytchev et al. [1].
The model is queue based, considering traffic lights the main
factor influencing the traffic. The city is modeled as a set
of roads joined by intersections. The prediction algorithm
takes the following as input: queue lengths at traffic lights
and traffic light frequencies; traffic density1 in the streets; the
probability of which direction a vehicle will go at a junction.
This allows the computation of the predicted queue lengths and
traffic densities an arbitrary number of traffic light cycles into
the future. Therefore, assuming that queue lengths and traffic

1The traffic density of a street is defined as the ratio between the number
of cars in the street and the length of the street.



densities can be measured accurately, the only unknown is the
turn probability (i.e. in which direction a vehicle is going to
turn) at the junctions.

Today’s traffic information is based primarily on sensors
built into the roads, such as inductive loops, which can detect
whether there is a car above them [2]. These devices allow
traffic managers to know whether the queue length is below or
above a certain number of discrete thresholds. They are useful
for optimizing traffic light behavior, for example allowing long
queues to be drained. However, they provide only information
about queues, but ignore traffic densities and turn probabilities
and therefore are not sufficient to compute an accurate urban
traffic prediction.

The set of protocols, services and data formats by which
cars transmit information to a server is termed Floating Car
Data (FCD) [3]. Each vehicle sends such information as
position, current and average velocity, fog light status, etc.
Depending on the implementation, transmission can be either
periodical or event-triggered e.g. acceleration.

By gathering data from the cars themselves and combining
it with data from inductive loop-enabled traffic lights there
is sufficient information to predict future queue lengths and
traffic densities. The system can also determine the average
velocity on a given road from data gathered by vehicles them-
selves. Given certain traffic densities, this allows predictions
to be made about traversal time along a road and consequently
enables the shortest time path to be calculated.

III. I N-VEHICLE COMPONENTS

Modern cars are equipped with a Controller Area Network
(CAN) [4] through which the major vehicle components such
as headlights, central lock and on-board computer, commu-
nicate. As the communication protocol is standardized, it is
possible for third-party devices to connect to the bus and
monitor (and possibly generate) messages [5]. We used a
prototype of such a device — called TCET — manufactured
by IBM for telematics field trials.

The application interface we run on TCET allows a driver
to request the shortest path between two given points on the
map. This best route is calculated using a time-based weighted
algorithm (namely time-based Dijkstra, the most commonly
used algorithm in router planners [6]) locally on the TCET
using predicted road traversal times calculated on the back-
end server which are broadcasted using e.g. Digital Audio
Broadcast.

IV. GENERATING DATA

We simulated the behavior of cars moving in a city to test
the correctness of our prediction model and the scalability of
our infrastructure. As no simulator corresponding to our needs
was available, we used an enhanced version of a open source
simulator called City Simulator [7] originally designed to test
indexing algorithms for location databases.

Our simulation has a diurnal behavior where traffic enters
the city during some initial period, remains there during a
subsequent period and leaves it during a final period. In order

to create local congestions and test the route-finder algorithm
we added a notion of attractiveness to roads.

Our model of the behavior of traffic in a city is simple, it
considers varying road attractiveness only with time and in
isolation from other roads. It ignores traffic light adaptation
to congestion, and uses a rather unrealistic model in which
cars randomly drive around the city making decisions as to
where to turn based on relative attractiveness. That said, it
is sufficient for the purposes of testing the scalability of the
infrastructure.

In our framework (see Figure 1), the simulator is run as
an off-line process writing the data to the file. The packet
generator takes the output file produced by the simulation and
generates actual UDP packets containing information about the
identity, location and velocity of cars and sends them to the
server. In addition, information about traffic light state changes
is also sent. The format of these packets is similar to that
specified in [3].
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Fig. 1. Data generation.

V. SERVER

We use a two-tier server model in which a front-end
interface receives the packets sent by the packet generators
and does some initial processing on the data before making
them available to the back-end application in which the actual
prediction model is implemented.

Communication between the two server tiers takes place
across a tuplespace implementation: TSpaces [8]. A tuple is
a vector of typed fields, and a tuplespace is a globally shared
memory space in which data is stored and retrieved as a set
of tuples using well-defined coordination semantics.

A. Server Front-End

The front-end part of the server performs the following
tasks:

• it identifies to which road a given location coordinate cor-
responds. For an arbitrarily complex map this operation
can be computationally intensive. In order to optimize the
road identification, we remember the last road on which
a given vehicle had been identified and restrict our search
to roads in its vicinity.

• it aggregates information as required by the prediction
model. In particular it calculates the queue length at traffic
lights and the traffic densities within roads, as well as



the average velocity on streets. The data related to a
vehicle on a given road is retained until a traffic light
state changing packet for that road is received, whereupon
the relevant values are calculated and transmitted to the
prediction model.

• it calculates statistics about the performance of the server,
e.g. following the number of packets sent against the
number actually received.

• in addition, some information about individual cars is also
passed through, in order to allow the prediction model to
determine the accuracy of its prediction and to adapt itself
accordingly.

B. Server Back-End: Prediction Application

The prediction application, based on our extension of [1],
takes the data processed by the front-end as input and produces
a set of predicted traversal times for each road for some
arbitrary number of traffic light cycle into the future. Due to
iterative nature of the model, the results of one iteration can
be applied in the next to obtain predictions for an arbitrary
number of time cycles into the future — albeit with decreasing
accuracy.

C. Discussion

The architecture as described was successively imple-
mented. However, we identified a number of problems. These
are, in increasing order of severity, as follows:

• the front-end server is proprietary, so we had to im-
plement the dispatching mechanism ourselves. It would
be preferable to use middleware that conforms with the
servlet container specification [9], e.g Tomcat.

• the number of server requests is very high (e.g. 20,000
requests/s generated by 100,000 cars sending request
every 5 seconds),

• the load the server has to handle increases as a linear
function of the number of cars. At some arrival rate at
the server the service rate cannot keep up and packets
are lost. This causes the behavior of the application to
degrade.

The first problem could be solved by using HTTP/TCP
communication between vehicle and server, but this imposes
significant overhead on the scarce capacity of the wireless hop,
and the maintenance of so many TCP connections at the server
is impractical. Furthermore, TCP retransmission is not useful
in applications where a packet expires after a relatively short
time, rendering its retransmission useless.

The second problem is that servers are easily overloaded
with a high number of requests even if the equivalent constant-
bit traffic is low (e.g. 2Mb/s in the example). We need
to change the characteristics of events to use servers more
efficiently.

The third problem is particularly severe as the infrastructure
built to handle this traffic prediction application should also
be usable by other real-time telematics applications. As we do
not know the requirements of future applications, it would be

preferable to have a solution in which the load at the server
increases less than linearly with the number of cars.

These considerations led us to introduce an additional
component between the cars and the back-end server.

VI. SERVER WITH M IDDLEBOX

A middlebox [10] is a device performing a service that
requires application logic but which is executed in the network.

The aggregation function performed by the front-end of
the server described in Section V-A can be applied to roads
independently. In our implementation the aggregation function
receives UDP packets, processes them as described above and
produces asynchronous XML/RPC messages, which it then
sends to the server. XML/RPC is an RPC protocol that uses
HTTP as transport protocol and XML for data representation.
The front-end server was reimplemented as a Servlet running
within the WebSphere Servlet engine. Its function is simplified
to receive only XML/RPC messages, process them and write
them to tuplespace in a suitable format. The aggregation
function combines many UDP packets into a single summary
on the state of a road, so the total number of packets received
by the server is significantly reduced. Moreover it allows
standard components to be used to implement the server front-
end.

By adding this aggregation function to a telematics middle-
box running within the network and placing those middleboxes
at locations close to where the data from the vehicle enters the
fixed network, we reduce the distance over which the UDP
traffic is carried and the total amount of packets the network
is required to support.
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Fig. 2. Overview of the Architecture.

The vehicle continues to send UDP packets to the server, but
these packets are intercepted by the middlebox based on the
destination address. Our initial prototype simply used a Linux
PC (kernel version 2.4.18) with theiptables kernel module
installed to prototype the middlebox. In order to enhance
performance we have instrumented the same function on a
network processor [11]. Figure 2 shows the entire end-to-end
architecture.



The middlebox is placed at the boundary between the
wireless and fixed networks. For example, if GPRS is used
then the middlebox is placed close to the device supporting the
GPRS Gateway Support Node (GGSN) function or integrated
into that device.

Whereas for the urban traffic prediction application the
middlebox implements an aggregation function, for other
telematic applications it can instrument other server load
reducing functions, e.g. filtering, caching, application-specific
forwarding. The support for different applications can coexist
on the same middlebox simultaneously.

VII. M EASUREMENTRESULTS

The architecture described in previous sections was tested
in the following configuration. The city used in the simulation
had 39 intersections with traffic lights and 74 bidirectional
roads and 1000 moving cars, which corresponds to the central
part of a moderately sized city. For the experiments we used
configurations with two data generators.

The server ran a servlet environment (Tomcat and Web-
Sphere Application Server) as well as a TSpaces server. The
prediction software also ran on the server and exchanged data
with the servlet engine using the tuplespace. In addition to
application data, some statistics were also generated and stored
in the tuplespace.

Two Linux routers were enhanced with the middlebox
aggregation function. Our test network was arranged such
that each of the data generators was connected to the server
through one of these routers. The routers had Pentium II 233
MHz processors and 64 MB of RAM. The server also ran
Linux but with a 1500 MHz processor and 1024 MB of RAM.
The network used to interconnect the devices was a 100 Mbit
Ethernet LAN.

A. Experiments and Results

In order to measure the accuracy of the prediction, we ran
the packet generator at a speed such that no packets were lost
at the server. We calculate the difference between the predicted
queue length some timet in the future and the actual measured
queue length at timet and express it as a relative error to
the queue length. This is averaged for all the queues in the
simulation in order to obtain the average queue length error
for each prediction cycle.

If the attractivness of the roads does not vary for a large
number of traffic light cycles then we achieve a 15-20%
average queue error for 15 traffic light cycles into the future.
The residual error is due to the fact that the measurements
are discrete, probability-rounding errors, i.e. a fraction of cars
cannot turn at a junction, as well as the fact that cars entering
at boundaries cannot be anticipated by the model.

We measured the effect of the middlebox on the volume
of traffic going into the server and observed a reduction by
a factor of 10 in the number of packets sent to the server.
However, there was hardly any reduction in terms of the total
volume of data measured in bytes due to the rather large
overhead of XML/RPC.

Our final measurement was the number of packets per
second the server could handle with and without a middlebox.
We simulated three scenarios: one without middlebox and
the other two with different application servers: WebSphere
Application Server v3.5 and Tomcat 4.1.

For each scenario, the simulation was run several times with
different runtime parameters, changing the frequency of packet
generation and the packet size. The goal was to determine the
correlation between packet size and number of packets that
can be handled.

We found that the size of the packet had little effect on
the number of packets that can be handled. Obviously, the
effect would be greater for large packets sent at a high ratio,
but as in our case packet-processing time was much longer
than network/kernel transmit time, this was negligible. We also
note that both servlet engines had approximately the same
performance, Tomcat being slightly faster.

Note that our conclusions about packet sizes also apply to
requests sent to the server. Using an encoding more efficient
than XML/RPC would have little effect on the performance
as, in most cases, the number of server requests and number
packets would remain the same. Considering these and the
advantages of using open standards, we decided to continue
using XML/RPC.
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Fig. 3. System performance and packet loss.

Figure 3 shows how a server scales with and without
middleboxes. The graph plots the number of UDP packets
received as a function of the number of packets sent. The
measurement was performed at the server when there is no
middlebox and on the middleboxes themselves when they are
used.

The experiment without middleboxes started to lose some
packets at a load of less than 2,000 p/s and has losses of more
than 50% at 5,000 p/s. The experiments with middleboxes
show no significant loss until the load is higher than 6,000
p/s, and at 11,000 p/s the loss is about 25%. At the same rate
the scenario without middleboxes has nearly 90% loss.

The performance of even a single middlebox with server
proved to be better than a server alone. This result is surprising



as the introduction of an additional processing layer should
slow the system down. Moreover, the middlebox was running
on a much slower computer than the server used in the first
scenario. The problem with the original solution was that the
tuplespace operations were synchronous, which became the
bottleneck of the system. In the middlebox solution, these
operations were also synchronous, however the webserver calls
were asynchronous. As the webserver has been designed and
optimized to process a high number of requests simultane-
ously, it used many threads to optimize performance. This
result could also have been achieved by redesigning the code
of the original solution, which was beyond the scope of our
project.

B. Discussion

The machines used in the test environment are much less
powerful than those that would be used in a real system;
therefore the absolute figures for load handled are not truly
representative. Of more interest is the gain achieved by using
the aggregation function on middleboxes. Note that these
middleboxes were much slower than the server. The results
showed that in the test environment the use of the middleboxes
reduces the amount of packets the server has to handle by
a factor of 10. Although the amount of data transferred is
the same, better performance is observed as the bottleneck is
the number of packets that can be handled, rather than the
throughput.

It should also be stated that our prototype application
contains no back traffic from the server to the client. For
other applications, back traffic may be routed through the
middlebox, which again reduces the server load. In addition,
the middlebox does protocol transcoding, changing proprietary
protocol based on UDP to a standard protocol based on HTTP,
which can be handled by ready-to-use webservers and servlet
environments. This means that it is possible to build scalable
and efficient systems using standard and available components,
which may greatly reduce development and testing time.

VIII. R ELATED WORK

Currently implemented traffic control systems are based
primarily on infrastructures built into the roads. For example,
SCOOT [2] developed in The Transport Research Laboratory
uses inductive loops for vehicle detection and measuring
queues. The central computer tries to optimize cycles and
offsets the traffic lights to discharge long queues.

Another approach to distributed telematics applications is to
use cars as both information gatherers and routers. An example
of ad hoc vehicle-to-car communication based on IEEE 802.11
is Fleetnet [12] and [13]. There are no scalability issues in
this approach as cars communicate directly with each other and
data is not passed to a central server. The primary advantage of
this approach is that the services available locally (i.e. provided
by other cars) do not have to be processed by a central
server. Urban traffic prediction, on the other hand, requires a
global overview and uses historical data. FCD data needs to be
coupled with data coming from other sources and therefore ad

hoc vehicle-to-car communication is not a complete solution to
this problem. There is still a need for middleware components
to ensure scalability and support the volume of traffic.

The problems of deploying FCD on a larger scale on
highways have been addressed in [14]. There also have been
projects on urban FCD such as BERTRAM [15]. Scalability
issues have not been clearly stated.

InternetCAR[16], [17] project develops the architecture
needed to connect a car to the Internet, but does not address the
problems of infrastructure to enable the services. Investigating
the problems of telematics applications for automotive industry
and describing infrastructure needed, our work is complemen-
tary to InternetCAR.
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X. CONCLUSION

Urban traffic prediction with floating car data is one example
of an emerging telematics applications, taking advantage of
global networking capabilities. Improving the scheduling of a
city’s resources by exploiting vehicles’ computational capabil-
ities would potentially bring considerable social benefits, for
example less time wasted in traffic jams and less pollution.

However, building the infrastructure to enable these applica-
tions is far from trivial, due to the large amount of data needed
and short processing times required. We have described a pro-
totype of an infrastructure to realize one such application. We
have shown how intermediate telematic specific middleboxes
can help in scaling this application as some of the data can
be aggregated before being transmitted to the server, reducing
both the amount of the data that has to be sent to the server
and the amount of processing the server is required to perform.
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