Smart Sensor in Wide Area Network Environment
How can sensors improve your safety?

Tadeusz Pietraszek

April 25, 2003
“To feel more is to know more”
Outline

• Introduction
• Need for monitoring system
• Issues of gas detection and measurement systems
• The concept of distributed monitoring system
 – Microprocessor based “Smart” sensor with semiconductor detector
 – TINI based control station
 – Utility software
 – Database for storing measurements
• Summary and Conclusions?
• Demo
Introduction

• “Smart Sensor in Wide Area Network Environment”

• Based on M.Sc. Thesis
 – Silesian University of Technology
 – ATEST-Gaz company

• Involved research
 – Gas measurements, signal processing
 – Monitoring systems
 – Java embedded systems

• Practical implications
 – Product currently manufactured and sold
 – National and EU (awaiting) certificate for industrial gas detectors
 – Entire system working in a prototype installation
Need for monitoring system (1)

- **Regulations**
 - Change in regulations for gas monitoring
 - Need for monitoring systems in new installations
 - Modernization of existing installations

- **Example applications of gas monitoring systems**
 - Coal mines
 - Chemical plants
 - Industrial plants
 - Petrol stations
 - Boiler houses
 - Underground parking places
 - Tunnels
 - Sewage treatment plants
 - Swimming pools
 - ...
Need for monitoring system (2)

• System Requirements
 – Efficient
 – Reliable (self diagnosis)
 – Easy to manage
 – Serviceable (remote access)
 – Modular
 – Database aware
 – Network aware
 – Secure
 – Low cost

• How existing systems satisfy this

• How this can be changed
Issues of gas detection and measurement systems

- Gas detection, signal processing
 - Variety of detection elements
 - Need for universal processing algorithm

- “In situ” sensor access
 - Means of access
 - Diagnostics and recalibration
 - Security issues
 - Compliance with EX regulations

- Measurement systems
 - Communication bus – capabilities and limitations

- Application of Java based controller
 - Areas of concern
 - Reliability
 - Speed
 - Resources
 - Internet technologies - implications on the system
• Introduction

• Need for monitoring system

• Issues of gas detection and measurement systems

• The concept of distributed monitoring system
 – Microprocessor based “Smart” sensor with semiconductor detector
 – Java based controller
 – Utility software
 – Database for storing measurements

• Summary and Conclusions

• Demo
The concept of distributed monitoring system
• Introduction
• Need for monitoring system
• Issues of gas detection and measurement systems
• The concept of distributed monitoring system
 – Microprocessor based „Smart“ sensor with semiconductor detector
 – Java based controller
 – Utility software
 – Database for storing measurements
• Summary and Conclusions
• Demo
Issues of gas detection and measurements

- Different types of sensors used in measurement systems
 - Semiconductor
 - Electrochemical
 - Catalytic combustion (pellistor)
 - ...

- Analog signal acquisition
- Signal processing
- Measurements, threshold detection and output control
- Data transmission
Microprocessor Smart Sensor (2)

• What it is (input, output)

• Digital signal processing
 • Data acquisition
 • Extraction
 • Prenormalization
 • Environment compensation and normalization
 • Sensor diagnostics, output control

• Sensor calibration
 – Memory map
 – Storing multiple entries
Microprocessor Smart Sensor (3)
Piecewise linear approximation, dynamic data structures

- Sensor characteristics approximation

- Data structures
Microprocessor Smart Sensor (4)
Communication protocol

• Communication protocol – Modbus ASCII
 – Standard and common protocol
 – Can be easily integrated with PLC
 – Easy to implement on microprocessor with limited resources – class0 compliance

• Modbus memory map
 – Allows to identify type of device, product and software version
 – Sets standard for existing and future devices
Microprocessor Smart Sensor (5)
Implementation
• Introduction

• Need for monitoring system

• Issues of gas detection and measurement systems

• **The concept of distributed monitoring system**
 – Microprocessor based „Smart” sensor with semiconductor detector
 – **Java based controller**
 – Utility software
 – Database for storing measurements

• Summary and Conclusions

• Demo
Java based controller (1)
Controller functions

- reading sensor states
- local control
- connecting to TCP/IP network
- HTML pages generation
- storing measurements into database
- remote sensor (and controller) configuration
Claim: “Java based microcontroller can be successfully applied in distributed gas detector system with a limited number of sensors, carrying all required functions”

Verify the suitability of Java based embedded platform for the purposes of the system
- feasibility and ease of implementation of required controller functions
- system resources
- system performance - sensor read frequency (i.e. number of sensors that can be effectively handled, T₉₀ must be ensured)
- system reliability

System design should ensure features not inherent to the platform
- detection of missed deadlines
- failure of TCP/IP network should not cause the stop of system critical functions
Java based controller (3)

TINI architecture

- **TINI - Tiny InterNet Interface**
 - DS80C390 processor (51’ clone)
 - Operating System with Java VM, Ethernet controller and TCP/IP stack
 - Two types of memories EEPROM and static RAM
Java based controller (4)

DSTINI1

- Proven and fully functional SIMM-sized computer based on TINI platform
 - Ethernet 10 Base – T controller
 - processor data and address bus available
 - 2 serial ports
 - 512kB FlashROM i 1MB SRAM
 - RTC
Java based controller (5)
Java Operating System

- Multitasking
- Memory filesystem support
- **Standard Java classes**
 - TCP/IP connections handling
 - HTTP server
 - Serial interfaces
- **Other protocols can be easily implemented**
 - Modbus
 - XML-RPC
Java based controller (6)

XML

- WWW pages in XML format
 - Measurement results can be easily extracted and processed
 - Data can be used by many standard applications
 - Changes in visualization do not require software modifications

- Transformation XML + XSL -> HTML
 - Can be done in XML compliant browser (e.g. IE 6.0)

- Java applets and Macromedia Flash applications can be used
 - Client side processing
 - Greater capabilities than XSL
Java based controller (7)

XML-RPC

- Cross-platform standard for distributed processing
 - Uses XML encoding
 - HTML-POST envelope
 - Libraries available for most of operating systems
 - 80% SOAP's capabilities – 20% SOAP complexity
- Great capabilities - limited speed
- Remote sensor configuration and database access by means of XML-RPC
 - XML-RPC server implementation (remote access)
 - XML-RPC client implementation (DB)
Java based controller (8)
Prototype
Java based controller (8)

Verification

- Proved feasibility of TCP/IP network and embedded Java controller in the design of distributed sensor system.
- The resources of TINI platform limit the number of sensor devices to approximately 40 pieces (ensuring T_{90})
- Prototype system proved to be reliable, however the system reliability should be supported by other means
 - Hardware
 - Software
• Introduction
• Need for monitoring system
• Issues of gas detection and measurements
• The concept of distributed monitoring system
 – Microprocessor based „Smart“ sensor with semiconductor detector
 – Java based controller
 – Utility software
 – Database for storing measurements
• Summary and Conclusions
• Demo
Utility software (1)

- Used for sensor’s configuration, calibration and diagnosis
- Modular architecture
 - Handles different sensors with different software versions
 - Different means of communication
- Java Swing Application
 - Can be integrated with existing code (e.g. TINI software device classes)
Utility software (2)
Utility software (3)
• Introduction
• Need for monitoring system
• Issues of gas detection and measurements
• The concept of distributed monitoring system
 – Microprocessor based „Smart” sensor with semiconductor detector
 – Java based controller
 – Utility software
 – Database for storing measurements
• Summary and Conclusions
• Demo
Database for storing measurements (1)
Considered architectures

- **Local sensor databases**
 - Resources
 - Communication issues

- **Local controller databases**
 - TINI resources
 - Communication protocol

- **Global system database**
 - Another layer required
 - Security issues
Database for storing measurements (2)

Architecture

- Three layer architecture
- XML-RPC
- Java and JDBC technology
 - Acceptable speed
 - Database independent
 - Code reusability
Database for storing measurements (2)
Sample implementation
Conclusions?

- Universal method for gas detector signal processing
 - Applicability of piecewise linear approximation on low resources microcontrollers
 - Measurements and tests for different sensors

- Measurement systems
 - Protocol analysis, capabilities and limitations
 - Feasibility of implementation

- Distributed gas measurement systems
 - Use of Internet protocols in industrial systems
 - Application of low cost Java based controller
 - Remote access
 - Diagnostics, Configuration, Calibration

- Implementation and testing

- Areas of future work…
Summary

• Need for gas monitoring systems.
• Ideal system requirements
• Research areas
• The concept of distributed monitoring system
 – Smart – microprocessor based sensor with semiconductor detector
 – TINI – the application of Java based controller in the system
 – SmartSet – utility software – sensor configuration, calibration diagnostics
 – Database for storing measurement results
Questions
END
SmartSensor in Wide Area Network - ON-LINE SYSTEM STATE

Server: TINI Server - Zurich demo (IP: 10.0.0.22)
TINI system clock: Fri Nov 01 12:23:05 GMT 2002

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Modbus Address</th>
<th>Transmissions OK</th>
<th>Transmissions Failed</th>
<th>Sampling Period [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Carbon monoxide sensor #1</td>
<td>2</td>
<td>487</td>
<td>0</td>
<td>1830</td>
</tr>
<tr>
<td>Sensor Type: 1</td>
<td>S/W version: 0.0.1</td>
<td>Compile date: 2/5/26</td>
<td>S/N: 1000</td>
<td></td>
</tr>
<tr>
<td>Sample counter: 158</td>
<td>Sensor lifetime: 151</td>
<td>Temperature: 4 [°C]</td>
<td>Concentration: 0 [ppm]</td>
<td></td>
</tr>
<tr>
<td>Flag: CRIT_FAIL1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flag: CRIT_FAIL2</td>
<td>OVL</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flag: NCRIT_FAIL1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flag: EESTAT</td>
<td>GOVL_EE</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flag: ALARMS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flag: STATEA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2. Carbon monoxide sensor #2

3. Carbon monoxide sensor (Ev)
3. Carbon monoxide sensor (EX)

Modbus address: 200
Transmissions OK: 490
Transmissions Failed: 0
Sampling period [ms]: 1750

Sensor type: 1
S/W version: 0.0.1
Compile date: 2/5/22
S/N: 1100

Sample counter: 158
Sensor lifetime: 36
Temperature: 24 [°C]
Concentration: 1604 [ppm]

<table>
<thead>
<tr>
<th>Flag</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
<th>Value 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIT_FAIL1</td>
<td>-</td>
</tr>
<tr>
<td>CRIT_FAIL2</td>
<td>-</td>
</tr>
<tr>
<td>NCRIT_FAIL1</td>
<td>-</td>
</tr>
<tr>
<td>ESTAT</td>
<td>GOVL_EE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALARMS</td>
<td>-</td>
</tr>
<tr>
<td>STATEA</td>
<td>-</td>
</tr>
</tbody>
</table>

S/W version: 0.0.6, **H/W version:** 0.0.1, **Compile date:** 02/06/02, **TINI lifetime:** 0:0:170

(c)2002 by Tadeusz Pietraszek. All rights reserved.
Digital Outputs Module DO-8
Modbus protocol

Controller

QUERY

Transmission OK

Controller

RESPONSE

QUERY

TIMEOUT

Controller

QUERY

Exception response

Controller

EXCEPTION-RESPONSE

Controller

QUERY

Broadcast transmission

Controller

BROADCAST QUERY
SB-95 Sensor

Active charcoal filter

Sensor

Identification mark

RS : sensor resistance
RH : heater resistance
Sensor structure

Measurement Head
- Sensor
- Temp

Analog Processing
- SWITCH
- vHEAT
- vDET
- vTEMP

A/D
- A
- B

uP PIC 16F873
- PWM
- Serial

Communication Interface
- RX
- TX
- DIR
- RS485
- 4-20mA

LED Signalling

+5V

4-20mA

uP

PIC 16F873